Distributed stochastic gradient tracking methods
نویسندگان
چکیده
منابع مشابه
A Distributed Stochastic Gradient Tracking Method
In this paper, we study the problem of distributed multi-agent optimization over a network, where each agent possesses a local cost function that is smooth and strongly convex. The global objective is to find a common solution that minimizes the average of all cost functions. Assuming agents only have access to unbiased estimates of the gradients of their local cost functions, we consider a dis...
متن کاملDistributed Stochastic Gradient MCMC
Probabilistic inference on a big data scale is becoming increasingly relevant to both the machine learning and statistics communities. Here we introduce the first fully distributed MCMC algorithm based on stochastic gradients. We argue that stochastic gradient MCMC algorithms are particularly suited for distributed inference because individual chains can draw mini-batches from their local pool ...
متن کاملSemi-Stochastic Gradient Descent Methods
In this paper we study the problem of minimizing the average of a large number (n) of smooth convex loss functions. We propose a new method, S2GD (Semi-Stochastic Gradient Descent), which runs for one or several epochs in each of which a single full gradient and a random number of stochastic gradients is computed, following a geometric law. The total work needed for the method to output an ε-ac...
متن کاملTowards Stochastic Conjugate Gradient Methods
The method of conjugate gradients provides a very effective way to optimize large, deterministic systems by gradient descent. In its standard form, however, it is not amenable to stochastic approximation of the gradient. Here we explore a number of ways to adopt ideas from conjugate gradient in the stochastic setting, using fast Hessian-vector products to obtain curvature information cheaply. I...
متن کاملStochastic Gradient Geodesic MCMC Methods
We propose two stochastic gradient MCMC methods for sampling from Bayesian posterior distributions defined on Riemann manifolds with a known geodesic flow, e.g. hyperspheres. Our methods are the first scalable sampling methods on these manifolds, with the aid of stochastic gradients. Novel dynamics are conceived and 2nd-order integrators are developed. By adopting embedding techniques and the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2020
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-020-01487-0